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1 Introduction

Material testing using the Kolsky bar, or split Hopkinson bar, technique has proven instru-
mental to conduct measurements of material behavior at strain rates in the order of 103 s=!.
Test design and data reduction, however, remain empirical endeavors based on the exper-
imentalist’s experience. Issues such as wave propagation across discontinuities, the effect
of the deformation of the bar surfaces in contact with the specimen, the effect of geomet-
ric features in tensile specimens (dog-bone shape), wave dispersion in the bars and other
particulars are generally treated using simplified models.

The work presented here was conducted in Q3 and Q4 of FY14. The objective was to
demonstrate the feasibility of numerical simulations of Kolsky bar tests, which was done
successfully. Prior to that kind of simulation, however, a series of exercises to demonstrate
basic wave propagation phenomena in rods was carried out. The principal objective was to
generate confidence in the numerical models. At the conclusion of Q4 simulations of wave
shape modifications via pulse shapers were demonstrated. Further work has been funded for
FY15 with the objectives of first comparing the results of simulations of compressive and
tensile Kolsky tests against actual data and then to use numerical simulations to help with
specimen design validation and data reduction.
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2 Simulation of Basic Wave Propagation Phenomena in Rods

The first exercise to be discussed is shown schematically in Fig. 1(a). It consists of a steel
striker bar of diameter d;, = 0.25 in. and length [, = 5 in. at the left of the model traveling
to the right with velocity v, = 133.5 in/s. This bar impacts another steel bar of length
[ = 144 in. and diameter d; = 0.25 in. for the first 72 in. and dy = 0.0938 in. for the second
72 in. The axial stress history is monitored at points 1 and 2 in the bar as illustrated.
Based on results of the wave equation!, the impact should produce a rectangular pulse that
propagates down the long bar with velocity

where E and p are the Young’s modulus and the density of the bar material, respectively.
In the model, F = 30 x 10% psi and p = 7.48 x 10~* slug-ft/in*, giving ¢ = 200, 267 in/s. Ac-
cording to the wave equation, the pulse velocity is independent of pulse shape and amplitude.
The signed amplitude of the stress pulse is given by

o= B
2c

The length of the pulse is 2l;, which gives it a time duration of

_ %
%

T

In the case being considered here, ¢ = 10 ksi and 7" = 0.05 ms.

Because of the mismatch in impedance at the diameter step, part of the pulse is transmitted,
and part of the it is reflected at the discontinuity. The amplitudes of the transmitted and
reflected stress pulses are given by

22
di + d3

Ot

and 2P
Or = 2 1 g;.

di +ds
Here, o; is the signed amplitude of the stress pulse incident onto the diameter step. The
transmitted pulse has the same sign as the incident pulse while the sign of the reflected pulse
will have sign opposite to the incident one if the diameter drops, as in Fig. 1(a). Substituting
the values d; = 0.125 in., dy = 0.09375 in. and 0; = —10 ksi gives 0y = —12.8 ksi and 0, = 2.8
ksi

1See Graff, K.F., Wave Motion in Elastic Solids, Oxford University Press, 1975. Chapter 2. Reprinted by
Dover Publications, New York, 1991.
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The finite element model of the problem assumed axisymmetry and was constructed within
the framework of the commercial finite element code Abaqus/Explicit. CAX4R elements,
which are four-node, axisymmetric continuum elements with reduced integration and hour-
glass control were used throughout the model. It was found that relatively coarse meshes
gave reasonable results. The discretization of the case being considered included elements
of size 1/32 in. on the side. To complete the description of the isotropic elastic model, the
Poisson ratio was set to v = 0.3.

Figure 1(b) shows the stress traces with respect to time at points 1 and 2 in the model. The
wave speed can be obtained given the distance between these points and the time interval
between the arrival of the pulses. Based on the data the value is ¢ = 200 x 10* in/s, which
agrees with the value calculated from the material properties. Note that the stress pulse has
an initial mean amplitude of 10 ksi and duration of 0.05 ms, as expected. The shape of the
pulse is nearly rectangular, but exhibits high frequency oscillations. This is a well-known
effect caused by dispersion, which in a rod causes signals of higher frequency to propagate
at a slower speed. Clearly, some of the high frequency content of the main pulse fell behind
and arrived at point 1 after the main pulse. This loss of high frequency content gives the
“ringing” behavior in the pulse. Dispersion in rods is the result of the lateral inertia that is
excited by Poisson’s ratio. Indeed, setting v = 0 in the simulation eliminated this ringing.

The pulse transmitted to the smaller diameter bar is shown in red in the figure as detected
at point 2. The predicted pulse signed amplitude calculated above is 12.8 ksi and this is
reflected in the simulation. Similarly the predicted amplitude of the reflected pulse is -2.8
ksi, and that corresponds to the mean amplitude shown in Fig. 1(b).

Figures 2 (a) and (b) show a similar case, but now the part of the bar to the right of the
step has larger diameter. The results are in general similar as discussed above, with the
difference that now the stress amplitude of the transmitted pulse is smaller than that of the
incident pulse and the reflected pulse as calculated at point 1 has the same sign as the initial
pulse. The predicted mean signed amplitudes of the transmitted and reflected pulses were
o, = —7.8 ksi and 0, = —2.2 ksi respectively, and these are reflected well in the numerical
predictions.

3 Effect of Sharp Mesh Refinements on Wave Propagation

The next exercise concentrated on investigating the effect of a relatively sharp mesh refine-
ment in a finite element model of a rod. This type of mesh transition may be necessary
in cases where a Kolsky bar test is being simulated in order to make computations more
efficient. Changing the element size, however, may affect the local stiffness of the model
with the possibility of causing reflections and amplitude changes of the transmitted pulses.
Figure 3(a) shows the model used to study this. It is similar to the previously considered
models, but the diameter of all rods is a constant 0.75 in. This diameter is more typical
of Kolsky bar set-ups than the 0.25 in. used above. Note that the striker bar has the same
length as before. The initial velocity in this case was v, = 267 in/s, thus giving rise to a
stress pulse with amplitude of 20 ksi in the longer bar. The longer bar contains a region
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Figure 1. (a) Geometry of a bar of circular section that steps down in area used in the
numerical calculations and (b) calculated incident and transmitted stress
histories measured at locations 1 and 2 in (a).

A and a region B of equal lengths. Figure 3(b) shows the results of three simulations: one
with a uniformly coarse mesh in both A and B with four elements through the radius, one
with a uniformly fine mesh with 24 elements through the radius and the last where the rod
model transitions from 4 elements through the radius in A to 24 elements in B as shown in
Fig. 4. Overall, the three responses are virtually indistinguishable as seen in Fig. 3(b). Note
how dispersion reduced the number of ripples in the stress signals between points 1 and 2.
Figures 5 (a) and (b) show the details of the peaks of the stress calculations at points 1 and
2 respectively. Note that some small differences between the three cases can be seen at this
level of magnification. These should not be consequential in the simulation of Kolsky bar
tests. One interesting issue is that if one examines the stress calculated at point 1, it is easy
to see that the coarse and the stepped mesh cases give slightly different results. This indi-
cates that the presence of the fine mesh ahead of the stress pulse influences the calculations
in the coarse region, a fact that was surprising.
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Figure 2. (a) Geometry of a bar of circular cross-section that steps up in area used in
the numerical calculations and (b) calculated incident and transmitted stress
histories measured at locations 1 and 2.

4 Simulation of a Compressive Kolsky Bar Test

The next exercise consisted of the simulation of a compressive Kolsky bar test. The dimen-
sions of the bars and the specimen are shown in Fig. 6(a). The striker bar initial velocity
was 267 ft/s. The amplitude of the strain pulse is therefore 6.67 x 107*. The specimen is
taken to have a uniaxial true stress-strain that is elastic-perfectly plastic with a yield stress
of 40 ksi, which translates into the engineering stress-strain curve shown in red in Fig. 6 (c).
The coefficient of friction between all contact surfaces was o = 0. The strain calculated at
point 1 in the incident bar A is g;. It is later followed by the reflected pulse ¢, at the same
location. The strain calculated at point 2 in the transmission bar is ;. The strain traces at
both points are shown in Fig. 6(b). The engineering stress and strain in the specimen (o,
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Figure 3. (a) Geometry of a bar model with circular cross-section with a mesh transition
from coarse in A to fine in B in the “stepped” case and (b) calculated stress
histories at points 1 and 2.

and €, can be calculated from the expressions given by Graff,

EAEt
As

Og —

and 5
c
€s=—— [ e.dr,

lS
where A is the cross-sectional area of the incident and transmitted bars. A, and [, are
the cross-sectional area and length of the specimen. The predicted engineering stress-strain
curve for the specimen material is shown in blue line in Fig. 6(c). The wavy character of
the stress response is attributed to the characteristics of the incident wave, which had been
influenced by the effects of dispersion. Note that while the engineering stress-strain curve
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Figure 4. Detail of the transition between coarse mesh in A to a fine mesh in B.
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Figure 5. Detail of the stress oscillations for the three cases considered in Fig. 3. (a) At
location 1 and (b) at location 2.

of the material is not predicted well prior to yielding (this is common in actual Hopkinson
bar testing and needs to be investigated), the plastic response is predicted rather well by the
average of the calculated curve. A strain of only 8% was achieved in the specimen because
the striker bar had a short length. In actual Kolsky tests, striker bars usually have lengths
between 12 and 24 in. Figure 7 shows the final distribution of equivalent plastic strain
(PEEQ) in the specimen. It shows a variation between 7.9 and 8.2%.

5 Pulse Shapers

The last exercise conducted in FY14 simulated the effect of including a pulse shaper on the
characteristics of the pulse propagated in a rod. A pulse shaper consists of a small material
disk located at the impact site between the striker bar and the incident bar in a Kolsky
test. Its purpose is to modify the shape of the wave produced by the impact and optimize
it for the purposes of a particular test. In the case considered here, the model included an
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Figure 6. Computational results for simulation of Kolsky bar compression specimen. (a)
Model schematic, (b) strain vs. time histories at point 1 in the incident pulse
bar and a point2 in the transmitted pulse bar and (c) comparison between the
engineering stress-strain curve inputted to the model and the calculated
stress-strain curve from the bar strain data.

elastic-plastic disk with the dimensions shown in Fig. 8(a) and properties of annealed copper.
The initial velocity of the striker bar was 133.5 ft /s, nominally giving a 10 ksi stress pulse in
the absence of the pulse shaper. Figure 8(b) shows the results of the exercise and includes
predictions of the stress pulse by the three models at the locations 1 and 2 indicated in Fig.
8(a). The labels “Coarse” and “Fine” refer to the size of the finite element mesh. The coarse
mesh had four elements through the radius of the bars and 8 x 3 elements along the radius
and length of the pulse shaper, while the fine mesh had eight elements through the radius of
the bars and 16 x 5 elements in the pulse shaper. All elements had aspects ratios near one.
While the mesh size has some effects on the results, it did not seem to significantly affect
the stress histories as shown in Fig. 8(b).

The third prediction is for impact without the pulse shaper. As before, the results show a
square pulse displaying the effects of dispersion. The effects of including the pulse shaper
are clearly seen. The rise and decay times of the stress wave are increased quite a bit
and the shapes are similar to that of the response of a first-order system. Note that the
duration of the stress pulse is also increased significantly, and that the stress oscillations due
to dispersion are significantly suppressed. The predicted effect of the pulse shaper on the
response of specimens in Kolsky bar tests will be investigated in F'Y15.
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Figure 7. Equivalent plastic strain distribution in specimen after the stress wave passed.
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Figure 8. (a) Geometry of the model used to study the effect of pulse shapers and (b)
stress histories at two points on a bar with a pulse shaper between the striking
bar and the transmission bar. Results are shown for two mesh densities and
they are compared against the wave profile produced without a pulse shaper.
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6 Conclusions

The exercises conducted during Q3 and Q4 of FY14 demonstrated that axisymmetric finite
element models of wave propagation in bars provide an excellent place to start more serious
investigations into the design and data reduction of Kolsky bar material tests. Clearly,
one can think of situations where axisymmetry may not be appropriate, such as apparatus
misalignment, specimens that are not axisymmetric, etc. These are situations that can
also be addressed by more sophisticated (and expensive) finite element modeling. For the
immediate future, much can be learned and applied to design from the consideration of
nominally perfect tests that can be studied with axisymmetric models.

The next steps of the project include:

e Simulation of actual Kolsky bar compression tests and comparison with experimentally
acquired data in order to validate the finite element model.

e Study of the effect of specimen geometry, friction and pulse shapers on the test results
and, in conjunction with experimental results, establish test design guidelines.

e Simulation of Kolsky bar tensile tests and study of the effect of various factors on the
test results. Similar to the above, the objective will be to establish design guidelines
for tensile testing.

e Design optimization of the long pulse “dropkinson bar” that is currently being con-
structed.

Sandia National Laboratories is a multi-program laboratory managed and operated by San-
dia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.
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